langchain4j-rag-implementation-patterns
Implement Retrieval-Augmented Generation (RAG) systems with LangChain4j. Build document ingestion pipelines, embedding stores, vector search strategies, and knowledge-enhanced AI applications. Use when creating question-answering systems over document collections or AI assistants with external knowledge bases.
Third-Party Agent Skill: Review the code before installing. Agent skills execute in your AI assistant's environment and can access your files. Learn more about security
Installation for Agentic Skill
View all platforms →skilz install giuseppe-trisciuoglio/developer-kit/langchain4j-rag-implementation-patterns skilz install giuseppe-trisciuoglio/developer-kit/langchain4j-rag-implementation-patterns --agent opencode skilz install giuseppe-trisciuoglio/developer-kit/langchain4j-rag-implementation-patterns --agent codex skilz install giuseppe-trisciuoglio/developer-kit/langchain4j-rag-implementation-patterns --agent gemini
First time? Install Skilz: pip install skilz
Works with 14 AI coding assistants
Cursor, Aider, Copilot, Windsurf, Qwen, Kimi, and more...
Extract and copy to ~/.claude/skills/ then restart Claude Desktop
git clone https://github.com/giuseppe-trisciuoglio/developer-kit cp -r developer-kit/skills/langchain4j/langchain4j-rag-implementation-patterns ~/.claude/skills/ Need detailed installation help? Check our platform-specific guides:
Related Agentic Skills
google-gemini-embeddings
by jezweb| Build RAG systems, semantic search, and document clustering with Gemini embeddings API (gemini-embedding-001). Generate 768-3072 dimension embedding...
langchain4j-vector-stores-configuration
by giuseppe-trisciuoglioConfigure LangChain4J vector stores for RAG applications. Use when building semantic search, integrating vector databases (PostgreSQL/pgvector, Pineco...
"AgentDB Vector Search"
by ruvnet"Implement semantic vector search with AgentDB for intelligent document retrieval, similarity matching, and context-aware querying. Use when building ...
"AgentDB Vector Search"
by proffesor-for-testing"Implement semantic vector search with AgentDB for intelligent document retrieval, similarity matching, and context-aware querying. Use when building ...
Agentic Skill Details
- Repository
- developer-kit
- Type
- Non-Technical
- Meta-Domain
- general
- Primary Domain
- general
- Sub-Domain
- search vector
- Market Score
- 25.5
Browse Category
More general Agentic SkillsReport Security Issue
Found a security vulnerability in this agent skill?