langchain4j-rag-implementation-patterns
Implement Retrieval-Augmented Generation (RAG) systems with LangChain4j. Build document ingestion pipelines, embedding stores, vector search strategies, and knowledge-enhanced AI applications. Use when creating question-answering systems over document collections or AI assistants with external knowledge bases.
Third-Party Skill: Review the code before installing. Skills execute in your AI assistant's environment and can access your files. Learn more about security
Installation
View all platforms →skilz install giuseppe-trisciuoglio_developer-kit/langchain4j-rag-implementation-patterns skilz install giuseppe-trisciuoglio_developer-kit/langchain4j-rag-implementation-patterns --agent opencode skilz install giuseppe-trisciuoglio_developer-kit/langchain4j-rag-implementation-patterns --agent codex skilz install giuseppe-trisciuoglio_developer-kit/langchain4j-rag-implementation-patterns --agent gemini
First time? Install Skilz: pip install skilz
Works with 14 AI coding assistants
Cursor, Aider, Copilot, Windsurf, Qwen, Kimi, and more...
Extract and copy to ~/.claude/skills/ then restart Claude Desktop
git clone https://github.com/giuseppe-trisciuoglio/developer-kit cp -r developer-kit/skills/langchain4j/langchain4j-rag-implementation-patterns ~/.claude/skills/ Need detailed installation help? Check our platform-specific guides:
Related Skills
google-gemini-embeddings
| Build RAG systems, semantic search, and document clustering with Gemini embeddings API (gemini-embedding-001). Generate 768-3072 dimension embedding...
langchain4j-vector-stores-configuration
Configure LangChain4J vector stores for RAG applications. Use when building semantic search, integrating vector databases (PostgreSQL/pgvector, Pineco...
"AgentDB Vector Search"
"Implement semantic vector search with AgentDB for intelligent document retrieval, similarity matching, and context-aware querying. Use when building ...
"AgentDB Vector Search"
"Implement semantic vector search with AgentDB for intelligent document retrieval, similarity matching, and context-aware querying. Use when building ...
Details
- Owner
- giuseppe-trisciuoglio
- Repository
- developer-kit
- Stars
- 38
- Forks
- 2
- Type
- Technical
- Meta-Domain
- data ai
- Primary Domain
- database
- Sub-Domain
- search vector
- Skill Size
- 39.3 KB
- Files
- 3
- Quality Score
- 45.8
AI-Detected Topics
Extracted using NLP analysis
Browse Category
More data ai skillsReport Security Issue
Found a security vulnerability in this skill?