Skillzwave

langchain4j-rag-implementation-patterns

38 stars 2 forks Updated Dec 24, 2025
45.8

Implement Retrieval-Augmented Generation (RAG) systems with LangChain4j. Build document ingestion pipelines, embedding stores, vector search strategies, and knowledge-enhanced AI applications. Use when creating question-answering systems over document collections or AI assistants with external knowledge bases.

Commands Marketplace
#RAG#RAG systems#document#Generation RAG#RAG Implementation
Also in: word api pdf

Third-Party Skill: Review the code before installing. Skills execute in your AI assistant's environment and can access your files. Learn more about security

skilz install giuseppe-trisciuoglio_developer-kit/langchain4j-rag-implementation-patterns
skilz install giuseppe-trisciuoglio_developer-kit/langchain4j-rag-implementation-patterns --agent opencode
skilz install giuseppe-trisciuoglio_developer-kit/langchain4j-rag-implementation-patterns --agent codex
skilz install giuseppe-trisciuoglio_developer-kit/langchain4j-rag-implementation-patterns --agent gemini

First time? Install Skilz: pip install skilz

Works with 14 AI coding assistants

Cursor, Aider, Copilot, Windsurf, Qwen, Kimi, and more...

View All Agents
Download Skill ZIP

Extract and copy to ~/.claude/skills/ then restart Claude Desktop

1. Clone the repository:
git clone https://github.com/giuseppe-trisciuoglio/developer-kit
2. Copy the skill directory:
cp -r developer-kit/skills/langchain4j/langchain4j-rag-implementation-patterns ~/.claude/skills/

Need detailed installation help? Check our platform-specific guides:

Related Skills

Details

Repository
developer-kit
Stars
38
Forks
2
Type
Technical
Meta-Domain
data ai
Primary Domain
database
Sub-Domain
search vector
Skill Size
39.3 KB
Files
3
Quality Score
45.8

AI-Detected Topics

Extracted using NLP analysis

RAG RAG systems document Generation RAG RAG Implementation

Browse Category

More data ai skills

Report Security Issue

Found a security vulnerability in this skill?